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Friction reduction in turbulent flow of polymer solution 
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Recent theoretical results for the turbulent flow of polymer solutions in round 
tubes have been extended to deduce the similarity laws for the boundary-layer 
flow of drag-reducing polymer solutions. The analysis shows directly how the 
drag reduction depends on the elastic properties of the fluid and thereby defines 
the levels of elasticity necessary to achieve significant reductions in drag. 

Calculations employing available physical property measurements of highly 
elastic (0.1 yo) and moderately elastic (0.01 yo) polymer solutions indicate that, 
for boundary layers on large objects, drag reduction may not occur at polymer 
concentrations that are economically attractive. For example, at  a Reynolds 
number of lo9 the reduction in drag is predicted to be 60% and 10% for the 
concentrated and dilute polymer solutions respectively. Some savings in polymer 
however, may be realized by special injection techniques or fluid systems with 
specially tailored properties. 

1. Introduction 
The phenomena of turbulent flow-drag reduction has received considerable 

attention owing to the many applications of both theoretical and pragmatic 
interest. Drag reduction in round tubes as effected by dilute polymer solutions 
has by now been well documented (Fabula 1965; Metzner & Park 1964; Seyer & 
Metzner 1967; Virk et al. 1967) and a recent review is available (Patterson, Zakin 
& Rodriguez 1969) which summarizes typical data and discusses empirical and 
theoretical analyses that have appeared. Little work, however, has appeared 
which is related to the reduction in drag of turbulent boundary-layer flows. 

Experiments have shown (Vogel & Patterson 1964; Lang & Patrick 1966) that 
significant reductions in drag can occur when bluff objects move through dilute 
polymer solutions, although in at least one instance an augmentation of the drag 
has been observed (Merrill, Smith & Chung 1966). Similarly, drag reduction has 
been observed on addition of polymeric additives to the boundary layer of 
streamlined objects (Crawford & Pruitt 1963; Vogel & Patt'erson 1964). An 
analysis by Granville (1 967) is available in which the similarity laws for boundary 
flows of dilute polymer solutions are deduced using dimensional arguments. In  
this analysis, which lacks a physical interpretation of the drag reduction, the 
arbitrary functions, as well as their dependence on any of the material parameters 
of the fluids, must be determined empirically. 
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In earlier studies one of the primary obstacles to formulating a quantitative 
understanding of the drag reduction has been the difficulty in applying conven- 
tional measurement techniques to these systems (Astarita & Nicodemo 1966; 
Fabula 1966; Metzner & Astarita 1967; Metzner & Seyer 1966; Savins 1965; 
Wetzel & Tsai 1968). Additionally it is noted that most of the empirical studies 
lack an adequate definition of the pertinent physical properties of the polymer 
solutions, and therefore offer little hope of being applicable to systems other than 
those from which the correlations were derived. Recently, however (Seyer & 
Metzner 1969) (based on tube flow experiments in which an optical technique was 
used to study the turbulence) it has been possible to deduce the similarity laws 
and their detailed dependence on the relaxation time of the fluid. It is the purpose 
of this paper to extend these results in formulating the similarity laws for drag 
reduction in a boundary-layer system, and to consider in detail the influence of 
physical properties on the drag reduction a t  Reynolds numbers which are suffi- 
ciently large to be of practical importance. 

2. Analysis 
In  the flow of Newtonian fluids the extensive data of Laufer (1954) and 

Klebanoff (1955), among others (Hinze 1959) serve to illustrate the importance 
of the flow in the wall region in governing the macroscopic features of the flow 
field. I n  drag-reducing systems the importance of the wall region has been 
demonstrated experimentally by the recent work of Wells & Spangler (1967) in 
which large reductions in drag were obtained by injecting the polymeric additive 
within the boundary-layer region of a tube. 

In  the region of the viscous sublayer the visual studies of Runstaldler, Kline & 
Reynolds (1962), and Corino & Brodkey (1969) and the detailed velocity measure- 
ments of Bakewell & Lumely (1967) serve in part to define the mechanics of 
Reynolds stresses. Qualitatively, in the region of the wall extending to approxi- 
mately y+ = 30, the turbulent momentum transfer rates, in a direction normal 
to the wall, are seen to be governed primarily by large eddies that occur a t  
random locations along the wall. The large eddies initially appear as concentra- 
tions of low momentum fluid which subsequently eject a mass of fluid toward the 
main stream where the identity of this fluid is rapidly lost. Corino & Brodkey 
show that as much as 70 % of the turbulent Reynolds stress can be accounted for 
by consideration of this flow. Bakewell’s velocity measurements show that the 
eddies occur as counter-rotating pairs with axes of rotation along the direction of 
mean flow and that ejection of the low momentum fluid may be identified with 
the radially directed flow between the two eddies. This picture of the eddy 
structure is in qualitative agreement with an earlier but highly simplified model 
of wall eddies considered by Townsend (1956). 

In  the ejection process, analysis of Bakewell’s measurement has shown (Seyer & 
Metzner 1969) that the flow process may be approximated by a pure elongational 
flow field much like that observed, for example, in converging flows from a large 
to a smaller duct. It is well known from both experimental and theoretical 
analyses (Astarita 1967, 1968; Ballman 1965; Marshall & Metzner 1967; Metzner 
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& Metzner 1969) that viscoelastic materials may offer a huge resistance to elonga- 
tional flow depending on the relative magnitude of the rate of elongation and a 
characteristic time scale of the fluid. For example, if a Maxwell model is selected 
to portray the properties of a sheet of material (Metzner 1967) it is easily shown 
that the elongational viscosity, defined as the longitudinal stress divided by the 
rate of elongation is given by 

4P 
pe = 1-( i j~r)2  7 

in which p is the ordinary shearing viscosity, 6 the relaxation time of the fluid 
and I' the rate of elongation. Thus for fluids with a finite relaxation time, the 
elongational viscosity is seen to always exceed the ordinary shearing viscosity 
and in fact is predicted to increase without limit as 28F approaches unity. Of 
significance is the fact that Metzner & Metzner (1 969) have measured elonga- 
tional viscosities of the order of 10,000 times the shearing viscosity for fluids 
commonly employed as drag reducers. 

For a turbulent flow field the stresses which sustain the elongational deforma- 
tions normal to the wall are primarily inertial in nature and therefore, at a given 
Reynolds number, will be equivalent in Newtonian and drag-reducing systems. 
As the elongational viscosity given in the preceding equation must be larger than 
for Newtonian fluids, the magnitude depending on the relaxation time, it follows 
that the rate of elongation must be lowered. In  the model developed by Seyer & 
Metzner (1969) the rate of elongation, I', is shown to be directly related to the 
local rate of momentum transfer so that a reduction in r implies directly that 
a reduced drag must occur. 

The preceding arguments while not lending themselves directly to a quantita- 
tive calculation of the amount of drag reduction, show the importance of a fluid 
relaxation time in governing the turbulence processes in the wall region. It has 
been pointed out in a number of instances (Astarita 1966, 1967; Truesdell 1964) 
that characterization of viscoelastic materials involves consideration of at  least 
one material parameter having the dimensions of time. Therefore the following 
dimensional arguments (up to and including equation (18)), which depend 
primarily on introduction of a scalar having the dimension of time to characterize 
the material, may be developed without reference to an assumed constitutive 
equation. 

Velocity profile 

Considering a turbulent boundary layer on a flat plate with U, the free-stream 
velocity and y the distance perpendicular to the plate, it is assumed (following 
Millikan 1939, p. 386) that in the wall region the axial velocity is given by: 

u = f&,, Y ,  P, P, e), (1) 

in which p, p, and 6 are the viscosity, density and a relaxation time of the material 
respectively. For the polymer solutions of interest the viscosity and relaxation 
time are in general dependent on the rate of deformation or equivalently shearing 
stress. Thus in (1) and 8 are determined by the local value of the wall shear 
stress, -rW. 
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Velocity profile and turbulence intensity measurements in the turbulent core 
of a round tube, obtained using an optical technique (Seyer & Metzner 1969), 
have shown that there is little measurable difference in the core turbulence from 
that of Newtonian fluids. Similar results for the velocity profile in the core region 
have been obtained by Nicodemo, Acierno & Astarita (1969) using a specially 
calibrated pitot tube. Therefore in the outer region of the boundary layer of 
thickness 6, the velocity defect is assumed to apply so that 

urn - u = f3(7, ,  y, 8, PI.  

24 = fi(7,, y, P, 6, p, 6) .  

(2) 

(3)  

Thus over the entire boundary layer 

With the dimensionless groups 
2 = 6u*/v, 

c = yp, 
and o+ = @(u*)Z/v, 

(4) 

in which u* = 2j(TtG/p) and v = p/p, equations (l), ( 2 )  and (3) are of the form 

( 5 )  

(6) 

( 7 )  

I u/u* = f,(Z, 5,6+), 

u/u* = fi(ZC, O+), 
(Urn - u)/u* = f 3 ( ! 3  

or U~/U* = F(Z,6+) ,  

Assuming a region of overlap for the velocities given by (6) and ( 7 )  so that with 

in which A must be a constant independent of the dimensionless groups. Integra- 
tion results in Um/u* = A In 2 + B(8+), (8) 

and (U,-u)/u* = -Alnc+C. (9) 

Equation (8) is independent of position whereas (9) is strictly valid only in the 
region of overlap. For Newtonian fluids the equation (9) is allowed to empirically 
describe the velocity over the entire boundary layer by allowing C t o  become a 
function of position, C'(<) say. Thus combining (8) and (9) we have, onintroducing 
the dimensionless velocity U+ = u/u*, 

u+ = Aln y+ + B(6+) - C'(p) ,  

which is valid over the entire boundary layer from the region of overlap to the 
outer edge of y = 6. Generally, available velocity profile data (Bogue & Metzner 
1963; Hinze 1959; Seyer & Metzner 1969) show that the function C' is the minor 
term in the preceding relation and for practical purposes may be safely neglected. 
Thus we have 

u+ = A In y+ + B(@+), 

which is a statement of the velocity law and is approximately valid over the 
boundary layer from the region of overlap to the outer edge at y = S. 
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I n  (10) the intercept is an arbitrary but universal function of the dimensionless 
group 8+ and A is a constant which is predicted to be the same as for Newtonian 
fluids. Thus the effect of elasticity is to change the intercept in (10) through 
changes in the group 8+. A similar result has been proposed earlier by Granville 
(1967) in which, however, it is necessary to empirically determine the dependence 
of B on the elastic properties plus several other dimensionless groups which are 
assumed necessary to portray the physical properties of the polymer solution. 

Drag coeflcient 
The drag on the plate, up to a position x along the plate, is given by the difference 
in momentum flux between the leading edge and that of position x along the plate. 
For Newtonian fluids, if contributions from the turbulent normal Reynolds 
stresses are ignored, the drag D(x)  on a plate of unit width up to a position x is 
given by Schlichting (1968) 

~ ( x )  = 1; u(um - u) dy7 (11) 

in which rw denotes the local value of the wall shearing stress. For the elastic 
systems of interest herein little can be said concerning the magnitude of the 
Reynolds stresses although, as noted before, measurements of turbulence 
intensity in the elastic systems suggest that the turbulence in the logarithmic 
region does not differ measurably from that of Newtonian fluids. Thus as a first 
approximation (11) and (12) are assumed to also portray the major effects in 
elastic systems. 

Substituting (10) into (1 1) and integrating: 

D(x)  = pAu*(U,  - 2Au") 6, I 
or D(x)  = pAv(U, - 2Au*) exp - - - B Le 111 
on substituting for 6 from equation (8). Following von Karman (1934) the 
substitutions 

and 0- = J ( 2 / W 7  (15) 

where Y is the local value of the dimensionless drag coefficient, in equation (13) 
result in 

D(x)  = ApuU, 1-- exp ~ ( ?) (vAB) 
Defining the local Reynolds number as 
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and differentiating (16) 

1 dD(x) 
_ _ ~  = A d [( 1 - y )  exp ( %B)] 
pu: ax dNR, x 

or rearranging, and integrating from the leading edge of the plate 

Limiting cases: highly elastic system 

To integrate (18) it is necessary to specify the function B and its dependence on 
u or, equivalently, the local shearing stress. The function B as determined by 
Seyer & Metzner (1969) from pipe flow measurements is shown in figure 1. It 
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FIGURE 1. Intercept function for similarity laws. 
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should be noted that the data in figure 1 are based on a limited range of pipe 
diameters and a single polymeric additive and therefore the correlation has not 
been severely tested. They do, however, encompass a sufficiently broad range of 
the primary variables involved, that is shearing stress and relaxation time, to 
provide a basis for integration of (18). While other pipe flow data are available 
from which B can be estimated and therefore compared with the function in 
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figure 1, the absence of detailed physical property measurements makes a 
detailed comparison impossible. 

The data in figure 1 have been derived primarily from frictional measurements. 
However, the close agreement between the two values obtained from velocity 
profiles, using a photographic technique, and the frictional measurements is 
evident. Values of the relaxation time used in determining 8+ have been esti- 
mated from normal stress measurements by assuming a Maxwell model t o  
portray the fluid properties (Seyer 1968). While this model is not correct in 
detail it is known to portray adequately the major effects observed in visco- 
elastic systems in a variety of flows (Etter & Schowalter 1965; Marshall & 
Metzner 1967; Meister & Biggs 1969; Seyer & Metzner 1969). In  particular, calcu- 
lations presented by Seyer & Metzner relative to the large eddy structure dis- 
cussed earlier show, as expected from the equation for elongational viscosity, 
that drag reduction occurred when the group 2 B r  became significant compared 
t o  unity. Thus, although the intercept function B determined by Seyer & 
Metzner depends on the assumed Maxwell model, this does not appear to be a 
serious limitation. 

I n  the limit for vanishingly small elasticity, that is 8+ -+ 0, B(0) = 5.6 (Bogue & 
Metzner 1963). Practically the data indicate that little effect of elasticity will 
occur for 8+ less than approximately unity. For 8+ > 20, the function becomes 
approximately constant and thus for those systems which are sufficiently elastic 
B will be constant over the length of the plate 

B(B+ > 20) = B 2 32, 

which represents the maximum drag reduction that can occur for the plate. 
Following von Karman (1934) and integrating (18) we find 

For large Reynolds numbers, neglecting terms in l/a and higher powers 

It is noted that neglect of the higher-order terms in (19) is in the case of drag- 
reducing systems, a better approximation than for Newtonian fluids owing to  
the increased values of a that must occur at  a given Reynolds number. For a 
plate of unit width and length L, the average drag coefficient is defined as 

D(x)  A ( l -  2A/a)exp{(a-B)/A} - ~_____ 

c f = T L =  ZP 00 W R ,  L 

- 2(1- 2A/a} 
- 

a2(1-(4A/v)+(6A2/(r2)- ...) 

2: 2/@, (21) 

(22) 

for large Reynolds number. Therefore using (21) in (20) and rearranging 

.J(~/c,) = A I ~ ( N , c ~ )  - A I ~ ~ A + B ,  



814 F. A .  Seyer 

which is the desired relationship. Equation (22) is identical in form to previous 
results for Newtonian fluids but with a modified value for the intercept. As the 
intercept is significantly larger than for Newtonian fluids, equation (22) requires 
that for a given Reynolds number a reduction in C, from the Newtonian value 
must occur. 

Moderate elasticity 

For very dilute polymer solutions, say in the order of 0.01 yo by weight or less 
reference to earlier data (Seyer & Metzner 1969) indicates that, except for a very 
small region near the leading edge of the plate, the group 8+ is confined to values 
much less than 20. For example, considering figure 1 at 8+ = 20, the corre- 
sponding value of shearing stress for the O . O l ~ o  solution studied by Seyer is 
approximately lopsf. F o f a  Newtonian fluid a t  U, = 30 ft./sec a straightforward 
calculation (Schlichting 1968) indicates that shearing stresses of 10 psf or greater 
only occur over approximately the first inch of the plate. It is therefore clear that 
these values of 8+ can contribute little to modifying the overall drag coefficient 
and accordingly it is assumed that B is a linear function of the group 0f. In  this 
region 

in which an adequate fit is obtained with 

B(0+ < 20) = B' = ~1+/3'0+, (23) 

a = 5.6, 

/3' = 1.55. 

Noting in (4) that the group 8+ is a function of u*, (23) must be modified before 
(18) can be integrated. Earlier data (Oliver 1966) which can be used to estimate 
O(r,) for the dilute solutions indicate that over the range of shearing stress of 
interest 

which in (23) allows us to write 
0+x J.,, 

B' = a+@* (O+ < 20)) (24) 

B' = a+/3(Um/a), (25) 

in which /3 is a constant characteristic of the elasticity of a given polymer solu- 
tion, and can be determined from a plot of 8+ versus u*. 

Substituting (25) into (18) 

Equation (26) is now expanded and integrated by parts, each integral yielding 
a power series in l /u .  With a significant amount of algebra and combining all of 
the terms, there results 

NR,s = Aa2 exp (Y) [ l + O ( S ) ] ,  
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in which terms of order l /v  and higher are assumed negligible compared to unity. 
With the definition of the drag coefficient used in (21) 

2A (1  - y)  exp (7) 
Aa2 exp ( T) c, = 

U-B' 

Therefore, for large Reynolds number, (27) may be written 

4(2/Cf) = AlnN, Cf-Aln2A+B', (28) 

in which B' is given by either (23) or (25). Equation (28) shows that for the region 
over which B is a linear function of the same form of relationship for the drag 
coefficient is applicable (cf. (22)) ; in this case, however, the intercept is dependent 
on the prevailing value of the drag coefficient, or equivalently, the shearing stress. 
As an alternate approximation, in common with a number of other studies 
(Astarita, Greco & Nicodemo 1969; Elata, Leher & Kahanovitz 1966), one may 
assume a shearing independent relaxation time in estimating 8+. In this case 8+ 
becomes directly proportional to shearing stress ; however, the essential form of 
(28) is retained. 

3. Results and discussion 
In  figure 2 the drag coefficient has been plotted as a function of length Reynolds 

number for maximum drag reduction. Included for comparison purposes is the 
curve for Newtonian fluids, calculated using equation (22) with B = 5.6 and 
A = 2-5 (Schlichting 1968). 

At a Reynolds number of approximately 2 x lo6 the calculations predict that 
the curve of maximum drag reduction will intersect with the curve for laminar 
flow. Reference to earlier data for flow in pipes (Seyer & Metzner 1969) indicates, 
however, that the behaviour in this region will be more nearly as indicated by 
the dashed portion of the curve. That is, a gradual departure from the laminar 
relation occurs which is followed by a very broad region of transition to fully 
developed turbulence. This idea is supported qualitatively by the recent observa- 
tions of Tanner (private communication) in which visual studies have been made 
of the growth of turbulent spots in drag reducing systems. At a given Reynolds 
number the growth angle of a turbulent spot was seen t o  be markedly reduced 
from that of a Newtonian fluid implying that transitional flow exists over a 
broad range of Reynolds number based on length. For the large Reynolds 
numbers of interest, however, say a large ship at 50ft./sec and 600ft. long, the 
broadened transition region would still be confined to a very short portion of the 
leading edge. 

At a Reynolds number of lo9 the curves indicate that the maximum percentage 
reduction in skin drag from the value for Newtonian fluids is 60% of the 
Newtonian value. While this is clearly a significant reduction in skin drag it is 
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FIGURE 3. Dimensionless relaxation time for 0.1 yo and 0.01 yo polymer solutions. 
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necessary to comment under what concentrations of polymeric additive this 
reduction might be achieved. 

In figure 3 the dimensionless group 8+ is given as a function of shearing stress 
for two concentrations of the same polymeric additive in water. The calculated 
curves are based on earlier normal stress data obtained by Oliver (1966) and by 
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Seyer & Metzner (1967) for water solutions of Separan AP 30. Considering the 
curve for the 0.1 yo solution, the parameter 8+ will exceed 20, providing the 
shearing stress is greater than about unity. For a boundary-layer flow with 
L = 600ft. and U, = 50ft./sec figure 2 predicts that at  the end of the plate 
7, N 1-25psf and therefore that this material will behave as a maximum drag 
reducer. 

For the 0.01 % solution a similar calculation shows that except for a very small 
strip less than l f t .  in extent, near the leading edge of the plate, 8+ < 20 and 
therefore the linear approximation B’ may be used. 

From the curve in figure 3 for the 0.01 yo solution, equation (25) becomes 

B’ N 5*6+ 12*1(U,/(~). 

Calculated values of the drag coefficient for the 0.01% solution have been 
included in figure 2 for several plate lengths. In  this case the drag reduction 
becomes a function of plate length because in (28) the drag coefficient is not a 
unique function of the Reynolds number. For example, a t  a Reynolds number 
of lo9 the reductions in drag are roughly 59 %, 23 % and 10 % of the Newtonian 
value for the 100,500 and 1000 ft. plates respectively. Qualitatively the approach 
to Newtonian behaviour with increasing plate length results from the generally 
smaller values of shearing stress and correspondingly smaller values of the 
dimensionless relaxation time 8+ that prevail for longer plates. This situation is 
similar to the decrease in drag reduction that occurs with increasing tube 
diameter. 

Considering a large ship, say in the order of 1OOOft. in length at  a speed of 
50 ft./sec the calculations illustrate that essentially no drag reduction can occur 
if the boundary-layer concentration is maintained at  0.01 % by weight of the 
polymer considered in this work. Although at  Reynolds numbers of practical 
significance drag reduction will occur with the concentrated solution, the rather 
large concentration involved may be prohibitive economically. Theoretically the 
analysis in this paper indicates that the necessary concentration of polymer need 
only be maintained within the inner region of the boundary layer, defined by 
y+ < 30 say, rather than throughout the entire boundary layer. This observation 
is of course supported by the experimental work of Wells & Spangler (1967) 
noted earlier. Thus to minimize the polymer consumption it is clear that small 
amounts of the polymer should be carefully injected at  frequent intervals along 
the boundary layer such that the desired concentration of polymer would be 
confinedTprimarily to a thin region very near the wall. The alternative, that is 
injecting all of the polymer at  the leading edge of the vehicle, would require that 
the entire boundary layer (to y = 6) be maintained at the desired concentration 
level. 

Noting from figure 3 that the effectiveness of the polymer as a drag reducer 
generally decreases along the plate, owing to the decrease of 8+ with decreasing 
shearing stress, it is possible that significant savings of polymer could be effected 
by a ‘programmed’ injection. For example, over the first half of the plate, where 
the shearing stress is high a 0.01 yo solution might be employed, while over the 
remainder of the plate a higher concentration would be necessary to maintain 

52 F L M  40 
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the parameter 8+ at a value high enough to effect significant drag reduction. In  
this context the recent drag reduction studies (Savins 1967, 1968a, 1968b; White 
1967), in which micellar systems have been employed to reduce the drag should 
be noted. In particular White’s data indicate that contrary to the behaviour of 
polymer solutions the drag reduction can increase with increasing pipe diameter. 
Qualitatively, referring to figure 3, this effect is predicted to occur with polymer 
solutions if the 7,- 8+ curves were to have a negative slope or, equivalently, if 
the effect of elasticity increases with decreasing shearing stress. In  the case, for 
example, of boundary-layer flows on large ships, this effect is particularly attrac- 
tive owing to the modest levels of shearing stress that prevail along most of the 
boundary layer. 

4. Summarizing comments 
The similarity laws for the turbulent boundary-layer flow of drag reducing 

polymer solutions have been formulated. Owing to the decrease in elastic effects 
with decreasing shear stress (at least for materials considered herein for which 
property measurements are available) the effectiveness of the drag reducer 
decreases along a plate or, equivalently, with plate length. This observation 
indicates that further studies using the micellar systems noted earlier or with 
other materials having specially tailored properties is warranted. The major 
effects that are predicted to occur suggest study is warranted in verifying the 
quantitative details of the function B. 

The recent observations of Tanner (private communication) for flow over a 
flat plate and the earlier turbulence measurements in round tubes (Seyer & 
Metzner 1969) indicate that the concentrated polymer solutions have a major 
influence on the transition to turbulence. If the transition to turbulence can be 
substantially delayed, or the intensity of the large eddies that exist near the wall 
significantly reduced, then the reduction in turbulent transport of polymer away 
from the wall region may be a major factor in determining the total polymer 
consumption. Conceivably, to optimize this effect a highly concentrated polymer 
solution might be most effective. Further studies are necessary, however, in order 
to quantitatively describe the delay in transition as well as any decrease in 
turbulent diffusivity near the wall. 
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